

EDVARDSVILLE

Portable Electrothermal Atomizer

- Portable electrothermal elemental analyzer for clinical applications
- Southern Illinois University Edwardsville
- Brad Noble
 Associate Professor
 School of Engineering

Edward Navarre
 Assistant Professor
 College of Arts and
 Sciences

Technology Summary

- Measures elemental content: atomizes liquid sample, automatically compensates for sample/instrumental changes
- Developed by:
 - Dr. Brad Noble, Associate Professor, Electrical and Computer Engineering, SIUE School of Engineering
 - Dr. Edward Navarre, Assistant Professor, Chemistry, SIUE College of Arts and Sciences
- Portable instrument designed for field work
 - Public health screening toxic metals screening (Pb, Cd, Cr, Ba)
 - Inexpensive instrument for non-routine analysis
- Seeking technology licensing opportunities

Technology Details

HCL...

filament -

lens

Power

Supply

- Atomic AbsorptionSpectrometer
- <u>H</u>ollow <u>c</u>athode <u>l</u>amp emits element-specific wavelengths
- Tungsten filament / atomizes microsample
- Mini-spectrograph detection
- Power-mode control of filament
- Microcontroller for heating and feedback
 - All features and control on the power supply
 - No computer required for basic functions

lens

Technology Details

- Temperature ∞ Power
- Neither v nor i are ∞ temperature
- Filament resistance is dynamic and changes with new filament
- Old versus new filament:
 - 3% higher voltage & 3% lower current
 - 1% difference in power
- Beyond feedback intelligent power supplies
 - v & i marks end of drying
 - Sample mass / volume estimation
- "One-shot" analysis for selected sample types (e.g., blood, urine)

Brief History

- **1972** 1st tungsten filament AAS experiment
- 1975 1st and only power-mode filament system (PDP 8)
- 1988 filament mounted on FAAS instrument (inexpensive add-on)
- 1990 filament as sample introduction device
- 1995 first prototype instrument (never commercialized)
- 1996 prototype of battery powered instrument (never commercialized)

How do we succeed? What's our advantage?

Exploit advances in:

Microcontrollers

Detectors

Power conversion

The Competition

- No similar technology available. Only prototypes.
- Traditional instruments
 - are resource intensive
 - are <u>not</u> portable

One competitor
 LeadCare II from Magellan Biosciences
 Only a blood lead analyzer. Requires major R&D to analyze other elements. <u>Uses mercury.</u>

Cost and Performance

Target cost < \$10k

Measure on-site!

Current Developmental Status

- Progress to date
 - Power-mode control completed (v.1)
 - Currently used in lab for AAS studies
 - Data collection for drying and "one-shot"
- Developmental hurdles
 - Verification of absolute measurement
 - \$75,000 to build version 2 with a hybrid PS
 - Smaller, more efficient
 - Implement sample sensing and automation
 - Analytical methods field methods

Technology Market

Market

- Clinics, hospitals, field work, small industry
- Outside the U.S. can't afford >\$30k for an instrument
 (e.g., areas of South America, Africa, and Asia)
- Teaching laboratories (low-cost)

Public health impact

- (U.S.) 250,000 children with elevated blood lead levels *
- Active lead paint production in 12 countries
- 29 product recalls in 2009 for excess lead #
- 12 million drinking glasses with excess cadmium (2010)

* 2007 CDC data

Technology Opportunities

- Instrument target:
 - public health monitoring of toxic metals
 - Blood and urine (Pb, Cd, Cr, Ba)
 - Hospitals
 - Foundries, factories
 - Public works departments (drinking/waste water)
 - Residential and commercial paint
 - Public works (I-64 bridge repair in St. Louis)
 - Lead abatement programs
 - Customs inspection

Technology Opportunities Cont'd

- Additional markets
 - Field work environmental analysis of water
 - Small industry low investment
 - Police and art preservation
 - Worldwide governmental labs
- Stand-alone or add-on for Flame AAS
 - U.S. small college
 - Worldwide educational institutions

Intellectual Property Protection

Technology is available for licensing

Innovations

- Process automation
- "One-shot" analysis
- Portability
- Hardware will be commodity parts (low-cost)

Portable Electrothermal Atomizer

- For more information:
 - Call or email
 - Edward Navarre: enavarr@siue.edu
 - Brad Noble: bnoble@siue.edu
 - Christa Johnson: cjohnaa@siue.edu
- Questions?